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ABSTRACT. Cell Growth Simulation (CGS) is a software package that simu-
lates the growth of cultured cells, and the effects of different types of agents
on the cell populations in vitro. It is a stochastic simulation system and is
based on the cell cycle kinetics. Experiments involving DNA synthesis, block-
ing, mitosis inhibition, labeling and cell kill can be simulated by imitating
application of drugs such as thymidine, aphidicoline, hydroxyurea, vincristine,
finblistine, colcemid and others. The model to be simulated is described by the
user according to his theoretical convictions. The system provides numerous
facilities to help the user describe an experiment and examine the simulation
results. A menu driven interactive scheme is used to communicate with the
user. CGS is implemented on AT type personal computers with hard disks.

This paper focuses on the simulator modules of CGS. It is an event driven
simulator which follows the individual cells through their life cycles. General
structure of the simulator, primary events and their attributes, chain operations,
culture initializations, imitation of cell maturation and DNA synthesis are
explained in the text as well as collection of statistics from the simulated
experiments.

1. Introdqction

Digital simulation is being used in cell biology since 1960’s!!3). The computer pro-
grams for these studies and many others were written in procedure oriented languages
such as Fortran, Algol and PL-I. Simulation languages such as Simscript, GPSS,
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SLAM, etc., have rarely been used in simulating experiments in cell biology.
Developing custom made computer programs for each study individually is costly and
requires close cooperation between biologists, programmers and simulation people.
Most of the time, this combination is difficult to achieve. In order to get around this
problem, specialized simulation packages have been developed for cellular
experiments(®3l, of which CELLSIM is the most widely known language.

Developments in computer technology have been very rapid in recent years and the
beneficiaries are the users. A noncomputer professional can afford to put a powerful PC
into his office and learn to use it without the help of a computer programmer. Cell
Growth Simulation (CGS) is a software package that attempts to make digital simula-
tion a practical research tool for cell biologists. Compared to its predecessors, CGS
requires less learning time from the users and less effort during its use. It offers more
capability and flexibility in modeling cellular experiments and examining its results.
CGS is implemented on IBM compatible AT computers with hard disks and 512k byte
RAM memory by using the True Basic language. It contains 8 logical modules, 5 phys-
“ical modules, 35 start-up files, 209 subprograms, and about 6200 source lines. CGS is
documented in three volumes: (I) Research and development behind it, (II) Systems
manual for maintenance and update, (III) User manual for the biologists, totaling over
500 pages.

The overall design philosophy and general structure of CGS is presented in Ref. [9],
its interaction with the user in a friendly manner is explained in Ref. [10]. This paper is
directed toward the simulation modules of the package. The basic principles of simula-
tion models imbedded into the design, assumptions, flexibilities and capabilities provid-
ed by the system, initialization problems of the cell cultures, execution logic of the
event driven simulator, primary events and their attributes, double linked event-chain
and its operations, imitation of the behavior of the cells through their life cycles and the
influence of the drugs that disturb or stop the normal cell maturation, and simulation of
DNA synthesis are explained in the upcoming sections. The paper ends with a discus-
sion on collecting periodic information about the status of the experiment being simu-
lated.

2. Basic Principles

Cell cultures are simulated by following the individual cells through their life cycles.
Life cycle contains several phases and cells spend random amounts of time in each
phase. When a cell splits into two daughter cells the life cycle starts all over again. The
user defines the cell cycle and its parameters. This provides flexibility to the system
and hopefully meets the needs of a larger user group and greater variety of cells. The
system imposes very few restrictions on the life cycle, such as every cycle must have a
DNA synthesis phase and a mitosis phase. Every phase must have at least one inlet and
no more than three outlets, and the number of phases in the cycle must not exceed 19.

Cell population sizes run into millions. For reasons of execution efficiency and pri-
mary storage restrictions such large number of cells can not be followed by the simula
tor. The simulator places the cells into 1000 typical cell groups and follows them
through the cycle and keeps track of the number of cells in each group.
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It is an event driven, variable time increment type simulator. Therefore, real time
values do not pose any problems, the time units need not be integerized and the small-
est time increment need not be found. Everything that changes the status of the model is
considered an event and all the events are kept in a chronologically ordered double-
linked chain. Execution sequence conflicts among the simultaneously occurring events
are broken by using priority levels.

Effect of drugs on the cultured cells in vitro are imitated through a set of abstract
facilities. The cells can be blocked, labeled or frozen, their development can be delayed
or they can be killed. The simulator provides several options to the users for inoculum,
and it can also take the final status of a culture for a previously run experiment as the
initial condition of a new run. Formation of the new DNA is based on the time that the
cell has spent in the synthesis phase, i.e, no external variation factors are used.

3. System Initialization

Most of the information that the: simulator needs about the experiment are kept in
four arrays. Some portions of these arrays are present by the experiment description and
verification modules. Simulation preparation activities complete the initialization for
these arrays. Phase related information are kept in two two-dimensional arrays holding
integer and real type data respectively. Information such as phase specialization, transit
time distribution, etc., are preset by experiment description and verification modules.
The future events chain is initialized either by copying the contents from the disk for
continued experiments, or by setting all the elements to zero and the starting location to
one for new experiments.

4. Culture Initialization

Inoculum can be specified in a number of different ways by the user. They are
briefly explained below.

a. Final Conditions of a Previous Simulation
If the user informs the system, CGS saves the ending conditions of the current run.
This data can be used for initializing the inoculum of another experiment.

b. Asynchronous Growing Culture

There are approximately twice as many young cells in a'growing culture as old cells
and the decreases follows a logarithmic curvellll. The experimental results confirm this
theoretical curve closely in the middle of the cell cycle and deviate slightly at the end
points. The system uses end points which are in between the theoretical and experimen-
tal points and approximates the middle by a straight line. The number of cells in the
inoculum are randomly assigned to this trapezoid where each phase has a slice.

c. Steady State Culture

It is assumed that there are as many cell deaths as cell births in this option. The num-
ber of cells in the phases of cell cycle are proportional to their phase. transit times. The
system assigns the number of cells in inoculum randomly to a rectangle where each
phrase has a slice.
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d. Synchronous Cultures

The users can start the experiments with synchronized cultures to save time and cut
down on the output. The system asks about the number of cells in each phase under this
option and requires that at least one phase must have cells in it. The distribution of the
cells within a phase needs to be known also. Under the default option, a trapezoid simi-
lar to asynchronous culture is assimilated for the phase and the cells are assigned to it
randomly. The cells can also be spread around the phase evenly with uniform age dif-
fefences, or they can all be placed to the beginning (zero age) or the end of the phase
(full page).

5. Events, Attributes and Chain Operations

CGS contains an event driven simulator, therefore almost everything that is affecting
the status of the model is treated as an event. Cell movements from one phase of the
cycle to another are the most common events and has the highest priority. The attribut-
es of this type of event are the event occurrence time, the number of cells in the group,
label indicator, DNA amount, entry time to the phase, time to be spent in the phase and
the priority level.

The other events in the system are simulation interrupts, collection of periodic statis-
tics, simulation screen updates, end of simulation, cell kill, freeze, delay, label and
block commands. The command particulars such as ending time, effectiveness rate,
etc., are carried as attributes. Priority level is an attribute for all events and the end of
simulation has the lowest priority.

The future event chain keeps the events in a chronological order. Four one-dimen-
sional arrays contain the event codes, occurrence times, forward pointers and the back-
ward pointers respectively. The attributes of the events are stored into a fifth array (a
character array) in a bit-packed form in order to save memory. If there are more than
one event happening at the same time, these events and their attributes are transferred
into the current events table. This table is arranged according to the priority levels of
the events before execution. Since cell movements has the highest priority they are
never entered into this table.

The future events chain is operated mainly by two routines. One of them removes
the next imminent event from the top of the chain, updates the pointers, return the event
code, the event time and row reference number for the attributes. The other subroutine
schedules a given event. It finds an empty row, locates the proper chronological spot in
the chain, and places the event there.

6. Simulation Driver

The structure of the driver routine for the simulator is shown on Fig, 1. It controls
and coordinates all the activities of this module. The details of its different segments
are shown on consecutive figures. Basically it has three portions; preliminary activities,
simulation within an endless loop and the ending activities. The figures contain a few
names in parenthesis. They are the actual module names for some of the important
functions.
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begin simulation driver routine (m1)
preparation activities
simulation within an endless loop
wrap-up activities

end routine

FIG. 1. Driver routine for the simulator.

The preparation activities are expanded in Fig. 2. When a simulation is requested by
the user, the system asks, receives and checks the experiment id number, brings the
experiment description into primary memory from the disk and opens the temporary
results files to be used during simulation.

receive and check experiment id number

bring experiment into primary memory

open temporary result files )

if this is a continued experiment then
bring-in the final conditions of the previous run
do selective initialization
take the old external commands out of the chain
schedule end of simulation
collect statistics and schedule stat. collection
schedule new commands
setup simulation screen display

else
call simulation preparation module for full

v system and inoculum initializations (k4)
end if

FIG. 2. Preliminary activities of the simulator.

The system and culture initializations differ depending on the status of the simula-
tion. If it is a continuation of a previous run, the ending conditions of the culture for the
earlier simulation are brought in from a hard disk and used as the inoculum for this run.
Otherwise, simulation preparation module makes the necessary initializations. Initial
statistics reflecting the current status of the culture is collected and the simulation
screen is set up and displayed.

The core of the simulator is the endless loop in the middle. Its expansion is shown on
Fig. 3. Although the figure is a big long, it has the following simple structure.

1. Fetch the next event(s)

2. Execute the event(s)

3. Go back to step (1) if end of simulation is not reached.
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do
find the next event and define its code, time
and row reference number for attributes
(cdr, tmr, rowr)
select on event code (cdr)
no more events (0)
if the current events table is empty then
print error message
set the flags to stop simulation
exit do
else
execute current events (m3)
if end of simulation, set flags and exit do
end if
cell movement (1-19)
if event time = clock then
execute cell movement (m2)
else
reschedule the event
execute current events (m3)
if end of simulation, set flags and exit do
end if
none cell movement event (19 <cdr< 112)
if event time = clock then
put event into current events table
else
if table is empty then
set clock = event time
put event into current events table
else
reschedule the event
execute current events (m3)
if end of simulation, set flags, exit do
end if
end if
case else
error condition
set error flag and exit do
end select
end loop

FiG. 3. Main body of the simulation driver.
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The end of simulation, or a user induced keyboard interrupt to stop execution sets up
some flags that are tested at step (3). Similar to all other events except the cell move-
ments, the end of simulation event and a stop simulation request enters into the current
events table before execution. Therefore, end of simulation condition is always checked
whenever the current events table is executed as shown on Fig. 3. If the event is a cell
movement from one phase to another (code 1-19), module m?2 is called to execute it
unless there are some earlier events in the current events table.

The infinite loop is exited in several ways; by the “end of simulation” event, by a
user interrupt through the keyboard or by an error condition. These conditions are rec-
ognized through flag settings that are tested right after the loop as shown on Fig. 4. If
the simulation fails, a message is printed and access to temporary results files are dis-
abled. Otherwise, the user is prompted with a question about continuing this experiment
in the future. If affirmative, ending conditions of the experiments saved on the hard
disk, and the experiment status and directories are updated, the files are properly closed
and control is returned to the main module.

if simulation is successful then
if the experiment is to be continued,
save final conditions, update experiment
directory and status
update result directory
save phase names
else
print message
end if
close files

FiG. 4. Ending activities of the simulator driver.

7. Cell Movements (m2)

Cell movements are the most common events. Figure 5 shows the structure of its dri-
ver routine. Normally, a target phase is determined, the phase statistics are updated, a
random phase transit time is computed and the cell is scheduled to leave the target
phase at the end of the calculated time. Basically module m2 is structured in the above
manner and then the details and perturbations are superimposed on it.

If there is an active block in the phase, the cell will not move to the next phase until
the block is lifted. If the target phase is absorbant, or if a killing agent is present, the
statistics are updated and the cell is taken out of the system. If there is labeling activity
in target phase, the cell is marked. If there is a block in the target phase’s entrance, the
cell will be kept there until the block is lifted.
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begin cell movement driver routine (m?2)
if the current phase is absorbant exit routine
unpack and define event attributes
if there is a block in current phase then
update block statistics and mark the cell
reschedule a cell movement at the end of block
. else
check block status and reschedule the cell
movements for the cells on quarter blocks
end if
check label and update statistics
check proliferation and update statistics
determine the target phase
if the target phase is absorbant, or if the cell
is killed or lost, update statistics and exit
determine the phase transit time randomly
if there is labeling in target phase, update stats
if there is a block in target phase, mark the cell
and schedule cell movement according to the
block release time
define attributes
schedule a cell movement
end routine,

FiG. 5. Cell movement driver routine.

8. Current Events Table Execution (m3)

All the events except the cell movements are brought into the current events table
before execution. It has the same function as the current events chain in other simula-
tion language processors. Since its size is small, a simple table is used in place of a
chain. This table contains all the events that are occurring at the same time and their
attributes. This mechanism is generated to resolve the executien time conflicts among
the events on the basis of priority levels. Since cell movements always have the highest
priority they never enter into this table. Module m3 takes care of the execution of the
events in this table and uses about a dozen helpers. The structure of the driver routine is
shown on Fig. 6. '

If the current events table is empty, an indicator flag is set and control is returned to
the calling routine which is the simulation driver. Otherwise, the events and their attrib-
utes are sorted according to priority levels and executed in that sequence as shown on
Fig. 6. The first case deals with user interrupts. The execution is stopped, a message is
displayed and a user reply is sought concerning what to do next.
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begin current events driver routine.
if table is empty, set failure flag and exit routine
sort table on priority
for each event in the table
select case on event code
21, 22 : scheduled or keyboard interrupt
halt simulation, print message and wait for
user input
if “s” is entered then print message and set
flags for run termination

31 : pulse kill command

32 : activate continuous kill command

33 : deactivate continuous kill command

4] : freeze development command

51 : delay development command

61 : pulse labeling command

62 : activate continuous labeling command

63 : deactivate continous labeling command

72 : activate block command

73 : deactivate block command

101  : screen clock update

102 : screen graph update

106 : collect and save information about the status
of the experiment

111  : end of simulation event

display message, set simulation
termination flags
else : unrecoverable error condition, display message
set error flags, dump arrays and important
variables onto disk for postmortem analysis
end select
next event
if there has been a keyboard entry and it is “i” then
schedule a keyboard interrupt event immediately
else
ignore the keyboard entry
end if
clear the table
end routine

FiG. 6. Current events execution module driver routine.

35
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The event codes greater than 29 and less than 100 are reserved to represent the drug
effect facilities provided by the system. Event code 31 is used for instant killing of the
cells in a specified phase. The system scans the future events chain, finds a cell in this
phase, draws a random number between 0-1 and decides if it is killed by comparing the
random number with the effectiveness rate of the kill specification. If the killing is to
stay effective for a period of time, then it is handled by two events. The event code 32
initiates the instant kill effect; and then sets up some indicators to make the kill com-
mand active for the cells which will be entering the phase in the future. At the end of
the effectiveness period, the event coded 33 deactivates killing by resetting the indica-
tors. The rest of the events concerning commands work in a similar manner also. The
screen clock is updated every 0.1 hour to show the progress of the simulation. The rest
of the information on the screen, the number of cells in each phase and the histogram
are updated every half hour after collecting information on the status of the experiment.

9. DNA Synthesis Simulation

The system imitates the new DNA formation in the synthesis phase by referring to
the DNA growth curve specified during experiment description. The system provides
several choices. Figure 7 shows two default options. It describes the percentage of
DNA synthesis in terms of the percentage of time spent in the synthesis phase for a
given celll!2- 131, Since phase transit time is stochastic, each cell’s syntheses phase dura-
tion is unique, and therefore the percentage of time spent in synthesis phase is comput-
ed with regard to this unique time. Once the percentage of time in the synthesis phase is
found, the computation of the new DNA amount is straightforward. Geometrically
speaking, we enter the x-axis with the given percentage, cut the curve and read the
DNA amount from the y-axis. Of course, the algebraic equivalent of the above descrip-
tion is carried out by the system. DNA amounts in the cells are updated at information
collection times, i.e., every half hour. The amount of DNA in the cells preceding the
synthesis phase are assumed to be 1. After the synthesis phase it is 2 until the end of the
mitosis phase.

10. Experiment Status Information Collection

Every half hour, as well as at the beginning and at the end of simulation, the follow-
ing information is extracted from the data structures: Clock time, report number, the
number of labeled and unlabeled cells in the culture, the number of cells with DNA
amount 1, with DNA amount 2, and with 1-10%, 11-20%, 21-30%, ..., 91-100% new
DNA completions, the cumulative number of cells killed, frozen, delayed, blocked, lost
and divided thus far. This data is written onto the first temporary results file. Phase spe-
cific information is also collected at this time for each phase in the cycle. They are as
follows: The number labeled and unlabeled cells in the phase, the number of groups in
the phase, the cumulative number of cells killed, frozen, delayed, labeled, blocked and
lost in the phase. This data for all the phrases in the cell cycle is stored onto the second
temporary results file. At the end of the simulation, the output facilities can be used to
examine the data in these files, and if deemed fit, they can be saved as permanent user
files.
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F16. 7. Chromosomal DNA Synthesis during S-Phase.

11. Illustration

The simulator has been tested with fictitious and real data, and the results have been
reported in the final report of this project!!4l, We would like to present some results
here in order to give a flavor about the product. The effect of the drug thymidine on the
chinese hamster ovary (CHO) cells was modeled by exposing an asynchronous culture
of CHO cells to thymidine at a concentration that blocked 90% of the cells and caused
them to accumulate at the first quartile of S-phase. In the modeling process, the popula-
tion is constructed using data available in the literature about CHO cells. The initial
number of cells was set to 1000 and the cell cycle was divided into four consecutive
phases, that is Gl =2.5 hr, S =8 hr, G2 = 1.5 hr and M = 0.5 hr. The drug was added to
the asynchronous growing cells 8 hours after plating of the cells and was allowed to
stay for one generation time (12.5 hr). At the end of thymidine treatment at time 20.5 hr
the drug was removed and cells were allowed to continue growing in fresh media for
two more generations.

Figure 8 shows the simulation of thymidine effects on the proliferation of CHO
cells. After the drug removal, cells moved through the remaining period of S-phase
(6 hrs) and through G2, then the actual cell divisions occurred in M and by the end of
M, cells have duplicated and continued to move in the cycle in asynchronous fashion.
Figures 9 and 10 show the detailed behaviour of cells in G1 and S phases. The cells
continue to accumulate in G2-phase after thymidine addition. However, cells which
bypass the thymidine blocking point continue to move through S, G2, M and G1 phases
and then they are blocked in the first quartile of S-phase in the second cycle. After the
drug removal, cells start to leave Gl-phase and enter S-phase (Fig. 10) in a synchro-
nous fashion.
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12, Summary

A software package called Cell Growth Simulation (CGS) is developed to imitate
growth of cell cultures under different conditions. Stochastic simulation is based on cell
cycle kinetics. Experiments involving DNA synthesis inhibition, mitosis inhibition,
labeling, cell kill, delaying cell maturation, blocking cell development etc., can be sim-
ulated by the system, i.e., the affects of different types of agents on the cultures can be
accommodated. CGS provides facilities to help the user describe, verify, save and recall
the experiments easily. Experiments are simulated according to the user specifications
and the results are displayed by graphs or tables. This article explains the simulator
modules of CGS and how they work. This software is implemented on AT type person-
al computers. It contains about 6200 source lines in True Basic language.
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