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Abstract. In this paper, first order uniform solutions with respect to
small parameter £ are established analytically for systems of general
odd nonlinearities.

Introduction

The free oscillations! ! of many conservative systems having a single degree of
freedom are governed by an equation of the form

X+ f(x)=0
where f'is a nonlinear function of x*. Here, X" is the acceleration of the system,
where f(x") is the restoring force. If x™ = x; be an equilibrium position of the

system (i.e. f(x*) = 0) and f'is an analytical function at x* = x;; then it can be ex-
panded in a Taylor series and we get a dimensionless equation of the form(?],

i+ Ot)g llzfz kjllj
j=1
where €1s a dimensionless quantity, u is a dimensionless variable and ), is a
constant, the dot denotes the derivative with respect to the dimensionless time .

In this paper, first order uniform solutions with respect to small parameter &
are established analytically for systems of general odd nonlinearities of the form

i + o u=eu*l"! (1)

First Order Uniform Solution

In this section, an analytical first order uniform solutions of Equation (1) will
be established for any possible non-negative integer values of . To do so we
shall use the method of multiple scalesl®! as follows
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= Introduce the scales

then using the chain rule, Eq. (1) to the first order could be written as
2 2

J ? +2e o'u +ogu=eu”t. (3)

(91-02 dT()OTH
= Let

u=uy(Ty,T)+eu (I,, 1)), “)
in equation (3) and equate like power of € we get

2
O 46wy =0, )
4N
2 2

) +f =2 o m +ud (6)

g ITodhy
= The solution of Equation (5) is

uy=a(T)) cos [wyTy+ B(T)], @)
then

0wy B
= —awy—— cos(wyTy + B)— wy —S'n(ono + P
andl, an an
and Equation (6) becomes
2
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I 4 Ruy =2aw, ZT—Bcos(wOTO +P) +2%%sin(w0T0 +p) +
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= Eliminating the mixed secular terms in the above equation yields
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= From Equation (8) it follows that a is constant and Equation (9) yields

I +1
%z_L(E)ﬂ@ -
an 2w 2 @ | Q
since T = £t , then
E ,a |[12|+ID
_ a2
B= (2) @I é”ﬁo,

Bl 20)0

where [ is constant.

Finally, the required first order uniform solutions of the generalized
Equation (1) are

E La 2I+10
u=a COS[{WO—%(E)NQ | gwﬁo]
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