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Abstract.  In this paper, first order uniform solutions with respect to
small parameter ε are established analytically for systems of general
odd nonlinearities.

Introduction

The free oscillations[1] of many conservative systems having a single degree of
freedom are governed by an  equation of the form

ẍ* + f (x*) = 0

where f is a nonlinear function of x*. Here, ẍ* is the acceleration of the system,
where f (x*) is the restoring force. If  x* = x*

0 be an equilibrium position of the
system (i.e. f (x*) = 0) and f is an analytical function at x* = x*

0; then it can be ex-
panded in a Taylor series and we get a dimensionless equation of the form[2],

where ε is a dimensionless quantity, u is a dimensionless variable and ω0 is a
constant, the dot denotes the derivative with respect to the dimensionless time t.

In this paper, first order uniform solutions with respect to small parameter ε
are established analytically for systems of general odd nonlinearities of the form

ü + ω2
0  u = εεεε u2l+1 (1)

First Order Uniform Solution

In this section, an analytical first order uniform solutions of Equation (1) will
be established for any possible non-negative integer values of l. To do so we
shall use the method of multiple scales[3] as follows
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■ Introduce the scales

T0 = t   ;   T1 = e t, (2)

then using the chain rule, Eq. (1) to the first order could be written as

■ Let

u = u0 (T0 , T1) + ε u1 (T0 , T1), (4)

in equation (3) and equate like power of ε we get

■ The solution of Equation (5) is

u0 = a(T1)  cos [ω0T0 + β(T1)] ,  (7)

then

and Equation (6) becomes

■ Eliminating the mixed secular terms in the above equation yields

(3)
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■ From Equation (8) it follows that a is constant and Equation (9) yields

since T1 = ε t , then

where β0 is constant.

Finally, the required first order uniform solutions of the generalized
Equation (1) are
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